...
The bigger the amounts of data-flow between hardware devices, the bigger of a problem it tends to be. This traffic (and also In-DC traffic between silos, if larger DC is under consideration), is the one that measures the service system (Warren) efficiency. It's a two-fold problem, first the traffic that is generated by the clients, secondly the one that is generated by Warren as a management system. The goal of Warren is to reallocate resources to minimize in-DC traffic and in rare cases, it can, by doing so, destabilize the network flow for a short period of time. Management flow must always take precedence when client flow is causing problems, even if it decreases client throughput further. Because it’s purpose is to restore the previous state, or at least maximize the efficiency with the currently limited amount of available resources.
Existing SDN solution
Resources In general, all SDN systems are based on the same principles an in major part, derived from two prevalent frameworks for SDN generation. There are several types of protocols when it comes to network device configuration, among which, OpenFlow is still the most dominant one. Almost all needed routing protocols are also supported by all major SDN solutions.
To conclude the above, there shouldn’t arise any drastic problems on the a connection basis. However there are However, there is an exception to that hypothetical balance - the security domain. All SDN systems implement some (or more) security domains, whether it’s client level or system-wide. To configure 2 or more SDN systems to cooperate simultaneously on that domain, might be more time consuming than configure the whole system to use adopt a new one.
Requirements in storage domain
...